Spectral singularities of Sturm-Liouville problems with eigenvalue-dependent boundary conditions (Q1035054)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Spectral singularities of Sturm-Liouville problems with eigenvalue-dependent boundary conditions |
scientific article; zbMATH DE number 5627592
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Spectral singularities of Sturm-Liouville problems with eigenvalue-dependent boundary conditions |
scientific article; zbMATH DE number 5627592 |
Statements
Spectral singularities of Sturm-Liouville problems with eigenvalue-dependent boundary conditions (English)
0 references
10 November 2009
0 references
Summary: Let \(L\) denote the operator generated in \(L_2(\mathbb R_+)\) by the Sturm-Liouville problem \[ -y''+q(x)y=\lambda^2y,\quad x\in\mathbb R_+=[0,\infty),\quad y'(0)/y(0)=\alpha_0+\alpha_1\lambda+\alpha_2\lambda^2, \] where \(q\) is a complex-valued function and \(\alpha_i\in\mathbb C\), \(i=0,1,2\), with \(\alpha_2\neq 0\). We investigate the eigenvalues and the spectral singularities of \(L\) and obtain analogs of Naimark and Pavlov conditions for \(L\).
0 references
0 references
0 references
0 references
0 references
0 references
0 references