Weighted parameter dependent Bergman kernel, Bergman projection and Fourier integral operators (Q1038577)

From MaRDI portal





scientific article; zbMATH DE number 5635209
Language Label Description Also known as
English
Weighted parameter dependent Bergman kernel, Bergman projection and Fourier integral operators
scientific article; zbMATH DE number 5635209

    Statements

    Weighted parameter dependent Bergman kernel, Bergman projection and Fourier integral operators (English)
    0 references
    18 November 2009
    0 references
    This article is motivated by a theorem of \textit{D.~Catlin} [Komatsu, Gen (ed.) et al., Analysis and geometry in several complex variables. Proceedings of the 40th Taniguchi symposium, Katata, Japan, June 23--28, 1997. Boston, MA: Birkhäuser. Trends in Mathematics. 1--23 (1999; Zbl 0941.32002)], according to which the Bergman kernel of the projection onto the square-integrable holomorphic sections of a holomorphic vector bundle over a smoothly bounded strictly pseudoconvex manifold is a Fourier integral operator. The authors generalize to the case of a weighted Bergman kernel depending on parameters.
    0 references
    Bergman kernel
    0 references
    Fourier integral operator
    0 references
    Kähler manifold
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references