Irregular boundary value problems with discontinuous coefficients and the eigenvalue parameter (Q1038598)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Irregular boundary value problems with discontinuous coefficients and the eigenvalue parameter |
scientific article; zbMATH DE number 5635335
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Irregular boundary value problems with discontinuous coefficients and the eigenvalue parameter |
scientific article; zbMATH DE number 5635335 |
Statements
Irregular boundary value problems with discontinuous coefficients and the eigenvalue parameter (English)
0 references
18 November 2009
0 references
The authors are concerned with the existence of solutions to the Birkhoff-irregular boundary value problem with discontinuous coefficients and transmission conditions \[ \begin{cases} L(\lambda)u=f(x), \quad x\in[-1,0)\cup(0,1]\\ L_1(\lambda)u=f_1, \\ L_2u=f_2\\ L_3u=f_3\\ L_4u=f_4, \end{cases}\tag{P} \] where \[ \begin{aligned} L(\lambda)u&=\lambda^2u(x)+\lambda[a_1(x)u'(x)+b_1(x)u(x)]+a_2(x)u''(x)+b_2(x)u'(x)+Bu_{\mid x},\\ L_1(\lambda)u&=\lambda(\alpha_{11}u(-1)+\beta_{11}u(1))+\alpha_{10}u'(-1)+\beta_{10}u'(1)+\gamma_{10}u(-1)+\delta_{10}u(1),\\ L_2u&=\alpha_{20}u(-1)+\beta_{20}u(1),\\ L_3u&=\eta_{10}u(-0)+\eta_{11}u(+0),\\ L_4u&=\eta_{20}u'(-0)+\eta_{21}u'(+0).\end{aligned} \] The function \(f\) and the coefficients \(a_i, b_i\) (\(i=1,2\)) are discontinuous at \(0\) while the remaining parameters are complex numbers, \(B\) is an abstract linear operator. \(\lambda\) is an eigenvalue of this irregular transmission problem. According to the given parameters, the authors presents some existence and uniqueness results for some values of the eigenvalue \(\lambda.\) The discussion concerns the homogeneous and nonhomogeneous equations as well as the case of an abstract linear operator and the biharmonic equation.
0 references
boundary value problem
0 references
eigenvalue parameter
0 references
transmission conditions
0 references
discontinuous coefficients
0 references
0 references
0 references