A generalized flat extension theorem for moment matrices (Q1039946)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A generalized flat extension theorem for moment matrices |
scientific article; zbMATH DE number 5637245
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A generalized flat extension theorem for moment matrices |
scientific article; zbMATH DE number 5637245 |
Statements
A generalized flat extension theorem for moment matrices (English)
0 references
23 November 2009
0 references
The flat extension theorem of \textit{R. E. Curto} and \textit{L. A. Fialkow} [Solution of the truncated complex moment problem for flat data. Mem. Am. Math. Soc. 568, 52 p. (1996; Zbl 0876.30033)] for truncated moment matrices is generalized in this paper, in order to include moment matrices indexed by an arbitrary set of monomials. The main result of the paper is the following: Let \(x=(x_1,\dots,x_n)\) be a multi-variable, let \({\mathcal C}\subset {\mathcal M}_n\). Let \[ {\mathcal C}^+={\mathcal C}\cup\bigcup_{i=1}^n x_i {\mathcal C}=\big \{m,x_1m,\dots,x_nm\; |\; m\in {\mathcal C}\big\} \] and \(\partial {\mathcal C}={\mathcal C}^+-{\mathcal C}\) stand respectively for the closure and the border of \({\mathcal C}\). Let \((y_a)_{a\in {\mathcal C}^+\cdot {\mathcal C}^+}\) and assume that every monomial \(m\in {\mathcal C}-\{1\}\) can be written as \(m=x_{i_1}\dots x_{i_k}\) with \(x_{i_1}\), \(x_{i_1}x_{i_2}\), \(x_{i_1}x_{i_2}x_{i_3}\), \(\dots\), \(x_{i_1}\dots x_{i_k}\in {\mathcal C}\). If \(M_{\mathcal C}^+(y)\) is a flat extension of \(M_{\mathcal C}(y)\), then there exists a (unique) sequence \(\tilde{y}=(\tilde{y}_a)_{a\in {\mathcal M}_n}\) for which \(M(\tilde{y})\) is a flat extension of \(M_{\mathcal C}^+(y)\).
0 references
truncated moment problem
0 references
moment matrix
0 references
Hankel operator
0 references
polynomial optimization
0 references
0.69927794
0 references
0.6875504
0 references
0.65695417
0 references
0.65689105
0 references
0.6544612
0 references
0.6492167
0 references
0.6103958
0 references
0 references