Inverse eigenvalue problem of unitary Hessenberg matrices (Q1040145)

From MaRDI portal





scientific article; zbMATH DE number 5637376
Language Label Description Also known as
English
Inverse eigenvalue problem of unitary Hessenberg matrices
scientific article; zbMATH DE number 5637376

    Statements

    Inverse eigenvalue problem of unitary Hessenberg matrices (English)
    0 references
    0 references
    0 references
    23 November 2009
    0 references
    Summary: Let \(H\in\mathbb C^{n\times n}\) be an \(n\times n\) unitary upper Hessenberg matrix whose subdiagonal elements are all positive, let \(H_k\) be the \(k\)th leading principal submatrix of \(H\), and let \(\widetilde H_k\) be a modified submatrix of \(H_k\). It is shown that when the minimal and maximal eigenvalues of \(\widetilde H_k\) \((k=1,2,\dots,n)\) are known, \(H\) can be constructed uniquely and efficiently. Theoretic analysis, numerical algorithm, and a small example are given.
    0 references
    inverse eigenvalue problem
    0 references
    unitary Hessenberg matrices
    0 references
    minimal and maximal eigenvalues
    0 references
    numerical algorithm
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references