Computation of Legendre functions (Q1040305)

From MaRDI portal





scientific article; zbMATH DE number 5637554
Language Label Description Also known as
English
Computation of Legendre functions
scientific article; zbMATH DE number 5637554

    Statements

    Computation of Legendre functions (English)
    0 references
    0 references
    0 references
    0 references
    24 November 2009
    0 references
    The authors develop methods for the computation of Legengre functions \(P_{\nu}(x)\), \(-1\leq x\leq 1\), \(\nu\in C\), the adjoint Legendre functions \(P_{\nu}^{-m}(x)\), \(m\in Z_{+}\), and their first derivatives. They used the Legendre differential equation and recurrence relations for \(P_{\nu}(x)\) and \(P_{\nu}'(x)\). They also based their results on integral representations given by \textit{E. T. Whittaker} and \textit{G. N. Watson} [A course of modern analysis. I. Translation from the English. 2nd ed. (Russian) (1963; Zbl 0108.26903)] and by \textit{I. M. Ryzhik} and \textit{I. S. Gradshtein} [Tafeln von Integralen, Summen, Reihen und Produkten. Moskau-Leningrad (1951; Zbl 0044.13303)].
    0 references
    Legendre functions
    0 references
    numerical approximation
    0 references
    Mehler-Dirichlet integral representation
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references