Pointwise Lipschitz functions on metric spaces (Q1046504)

From MaRDI portal
scientific article
Language Label Description Also known as
English
Pointwise Lipschitz functions on metric spaces
scientific article

    Statements

    Pointwise Lipschitz functions on metric spaces (English)
    0 references
    22 December 2009
    0 references
    Let \(f\) be a real-valued function on a metric space \((X,d)\). The pointwise Lipschitz constant of \(f\) at a point \({x\in X}\) is defined as \[ \text{Lip} f(x)= \limsup_{y\to x, y\neq x}\frac{|f(x)-f(y)|}{d(x,y)}. \] The pointwise Lipschitz function space is defined as \[ D(X)=\{f: X\to\mathbb R: \|\text{Lip} f\|_\infty <\infty\}. \] It is obvious that always \({\text{LIP}(X)\subset D(x)}\), where \({\text{LIP}(X)}\) is the space of all real-valued Lipschitz functions on \(X\). The authors introduce a geometric condition on \(X\) called quasi-convexity and show that, for quasi-convex \(X\), the equality \({\text{LIP}(X)=D(X)}\) holds. Then the authors introduce local radially quasi-convex metric spaces. For such \(X\), the space \({(D^\infty(X), \|\cdot\|_{D^\infty})}\) is a Banach space. Here, \({D^\infty(X)}\) denotes the space of all bounded functions in \({D(X)}\), and \({\| f \|_{D^\infty}=\max\{\|f\|_\infty, \|\text{Lip} f\|_\infty \}}\). A Banach-Stone theorem for the space \({(D^\infty(X), \|\cdot\|_{D^\infty})}\) is proved. In the last section, real-valued functions on a metric measure space \({(X,d,\mu)}\) are considered. The space \({D^\infty(X)}\) is compared with the Newtonian-Sobolev space \({N^{1,\infty}(X)}\), introduced by \textit{N.\,Shanmugalingam} [Rev.\ Mat.\ Iberoam.\ 16, No.\,2, 243--279 (2000; Zbl 0974.46038)]. In particular, if \(X\) supports a doubling measure and satisfies a local Poincaré inequality, then \({D^\infty(X)=N^{1,\infty}(X)}\).
    0 references
    Lipschitz functions
    0 references
    Banach-Stone theorem
    0 references
    metric measure spaces
    0 references
    Newtonian-Sobolev spaces
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references