A note on prime \(k\)-th power nonresidues (Q1055804)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A note on prime \(k\)-th power nonresidues |
scientific article; zbMATH DE number 3825908
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A note on prime \(k\)-th power nonresidues |
scientific article; zbMATH DE number 3825908 |
Statements
A note on prime \(k\)-th power nonresidues (English)
0 references
1983
0 references
The autbhor shows that if \(p\) is a prime and \(n<c\log p/\log\log p\) then the \(n\)th least prime \(k\)th power nonresidue modulo \(p\) is \(O(p^{1/4+\varepsilon}\). \textit{K. K. Norton} has obtained a stronger result (see [Notices Am. Math. Soc. 21 (1974)]).
0 references
prime k-th power nonresidues
0 references
character sum estimates
0 references
0 references