Sur le problème des marges (Q1056963)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Sur le problème des marges |
scientific article; zbMATH DE number 3895968
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Sur le problème des marges |
scientific article; zbMATH DE number 3895968 |
Statements
Sur le problème des marges (English)
0 references
1986
0 references
Let X be a set, A an algebra of subsets of X, m and M two mappings from A to \({\bar {\mathbb{R}}}_+\). Then there exists a finitely additive measure \(\theta\) on A such that \(m\leq \theta \leq M\) if and only if for all the sequences \((A_ 1,...,A_ p)\) and \((B_ 1,...,B_ q)\) in A such that \(\sum^{p}_{i=1}1_{A_ i}\leq \sum^{q}_{i=1}1_{B_ i}\), the inequality \(\sum^{p}_{i=1}m(A_ i)\leq \sum^{q}_{i=1}M(B_ i)\) is satisfied. This simple condition permits us to deduce and generalize many previous results relating to the ''marginal problem''.
0 references
finitely additive measure
0 references
marginal problem
0 references