Extremalität von Ellipsoiden und die Faltungsungleichung von Sobolev (Q1057498)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Extremalität von Ellipsoiden und die Faltungsungleichung von Sobolev |
scientific article; zbMATH DE number 3897722
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Extremalität von Ellipsoiden und die Faltungsungleichung von Sobolev |
scientific article; zbMATH DE number 3897722 |
Statements
Extremalität von Ellipsoiden und die Faltungsungleichung von Sobolev (English)
0 references
1986
0 references
In connection with the Riesz-Sobolev convolution inequality, \(f*g*h(0)\leq f^**g^**h^*(0)\) \((f^*\) is the Schwarz-symmetrization of f), the following characterization of ellipsoids is proved: Among all convex bodies \(A\subset {\mathbb{R}}^ n\) with given measure \(| A| >0\) the integral \(\int | A\cap (x-A)|^ pdx (1<p<\infty)\) is maximal iff A is an ellipsoid. In solving the problem of uniqueness the distribution function of \(A*A(x)=| A\cap (x-A)|\) is considered and its relation to the volume of the polar reciprocal of the projection body of A is exhibited.
0 references
convolution inequality
0 references
convex bodies
0 references
distribution function
0 references
polar reciprocal
0 references
projection body
0 references
0.8890295
0 references
0.88625056
0 references
0.88598824
0 references
0.8852619
0 references
0.8821971
0 references
0.8799041
0 references