Extremalität von Ellipsoiden und die Faltungsungleichung von Sobolev (Q1057498)

From MaRDI portal





scientific article; zbMATH DE number 3897722
Language Label Description Also known as
English
Extremalität von Ellipsoiden und die Faltungsungleichung von Sobolev
scientific article; zbMATH DE number 3897722

    Statements

    Extremalität von Ellipsoiden und die Faltungsungleichung von Sobolev (English)
    0 references
    0 references
    1986
    0 references
    In connection with the Riesz-Sobolev convolution inequality, \(f*g*h(0)\leq f^**g^**h^*(0)\) \((f^*\) is the Schwarz-symmetrization of f), the following characterization of ellipsoids is proved: Among all convex bodies \(A\subset {\mathbb{R}}^ n\) with given measure \(| A| >0\) the integral \(\int | A\cap (x-A)|^ pdx (1<p<\infty)\) is maximal iff A is an ellipsoid. In solving the problem of uniqueness the distribution function of \(A*A(x)=| A\cap (x-A)|\) is considered and its relation to the volume of the polar reciprocal of the projection body of A is exhibited.
    0 references
    convolution inequality
    0 references
    convex bodies
    0 references
    distribution function
    0 references
    polar reciprocal
    0 references
    projection body
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references