Projektive Klassen endlicher Gruppen. II b: Gesättigte Formationen: Projektoren (Q1057983)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Projektive Klassen endlicher Gruppen. II b: Gesättigte Formationen: Projektoren |
scientific article; zbMATH DE number 3899150
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Projektive Klassen endlicher Gruppen. II b: Gesättigte Formationen: Projektoren |
scientific article; zbMATH DE number 3899150 |
Statements
Projektive Klassen endlicher Gruppen. II b: Gesättigte Formationen: Projektoren (English)
0 references
1985
0 references
The paper continues the research on the problems treated in Part I [Math. Z. 186, 149-178 (1984; Zbl 0544.20015)]. Using the Gaschütz-Lubeseder theorem for finite groups, the author studies the projectors and the covering subgroups corresponding to saturated formations. The first section specifies the saturated formations with respect to which, in any finite group, there is exactly one conjugacy class of projectors. Further, those saturated formations are described whose projectors are covering subgroups. At last, some results on saturated formations \({\mathcal F}\) with the property that any \({\mathcal F}\)-maximal subgroup of a finite group is always an \({\mathcal F}\)-projector of the same group are given. We notice the special and ingenious ways of solving the proposed problems in the universe of all finite groups.
0 references
Gaschütz-Lubeseder theorem
0 references
saturated formations
0 references
conjugacy class of projectors
0 references
covering subgroups
0 references