Decomposition \(K=MK*M\) for semisimple real Lie groups of \(R\)-rank one (Q1058612)

From MaRDI portal





scientific article; zbMATH DE number 3901062
Language Label Description Also known as
English
Decomposition \(K=MK*M\) for semisimple real Lie groups of \(R\)-rank one
scientific article; zbMATH DE number 3901062

    Statements

    Decomposition \(K=MK*M\) for semisimple real Lie groups of \(R\)-rank one (English)
    0 references
    1984
    0 references
    Let \(G\) be a semisimple real Lie group of \(R\)-rank one, \(G=KAN\) be its Iwasawa factorization and \(M=\operatorname{Cent}_K(A).\) The author studies the structure of maximal compact subgroup \(K\) of \(G\). Namely, if \(G^*\) is a subgroup of \(G\) corresponding to the Lie algebra of rank one \[ \mathfrak g^*=(\sum_{k=\pm 1,\pm 2} \mathfrak g^{k\alpha})\oplus \mathfrak m\oplus \mathbb{R} H_{\alpha} \] then the mapping \(M\times K^*\times M\to^{\phi}K\) (where \(K^*=K\cap G^*)\) defined by the multiplication in group \(G\) is onto. In addition the application of the decomposition in different problems of harmonic analysis is shown.
    0 references
    0 references
    semisimple real Lie group of R-rank one
    0 references
    Iwasawa factorization
    0 references
    maximal compact subgroup
    0 references

    Identifiers