Local sharp maximal functions (Q1058696)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Local sharp maximal functions |
scientific article; zbMATH DE number 3901395
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Local sharp maximal functions |
scientific article; zbMATH DE number 3901395 |
Statements
Local sharp maximal functions (English)
0 references
1985
0 references
The authors consider in detail the propserties of the local maximal function introduced by F. John namely, for \(0<\alpha \leq\) set \[ M^{\#}_{0,\alpha}f(x)=\sup_{x\in Q}\inf_{c} \inf \{A\geq 0: | \{y\in Q: | \quad f(y)-c| <A\}| <\alpha | Q| \}, \] where \(c\in {\mathbb{C}}\) and Q denotes a cube in \({\mathbb{R}}^ n\) of sides parallel to the coordinate axes. Among other things they show that the Peetre K-functional for real interpolation between the Lorentz space \(L^{1,\infty}({\mathbb{R}}^ n)\) and BMO(\({\mathbb{R}}^ n)\) satisfies \[ K(t,f;L^{1,\infty}({\mathbb{R}}^ n),BMO({\mathbb{R}}^ n))\approx \sup_{0<s<t}s(M^{\#}_{0,\alpha}f)^*(s), \] where * denotes, as usual, the non-increasing rearrangement of f. Several applications of this careful study are given.
0 references
local maximal function
0 references
Peetre K-functional
0 references
\(L^{1,\infty }({\mathbb{R}}^ n)\)
0 references
\(BMO({\mathbb{R}}^ n)\)
0 references
0 references