Endliche nicht-auflösbare Gruppen, deren sämtliche Charaktergrade Primzahlpotenzen sind (Q1059709)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Endliche nicht-auflösbare Gruppen, deren sämtliche Charaktergrade Primzahlpotenzen sind |
scientific article; zbMATH DE number 3904814
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Endliche nicht-auflösbare Gruppen, deren sämtliche Charaktergrade Primzahlpotenzen sind |
scientific article; zbMATH DE number 3904814 |
Statements
Endliche nicht-auflösbare Gruppen, deren sämtliche Charaktergrade Primzahlpotenzen sind (English)
0 references
1985
0 references
In a previous paper the author has classified all those solvable finite groups whose degrees of all the complex irreducible representations are prime powers [see J. Algebra 94, 211-255 (1985)]. Here the work is finished in that it is proved that if the Brauer height conjecture is true, the non-solvable group G has all its irreducible complex representations of prime power degree if and only if \(G=B\times Y\), where B is Abelian, \(Y\cong PSL(2,4)\) or \(Y\cong PSL(2,8)\).
0 references
Brauer height conjecture
0 references
non-solvable group
0 references
irreducible complex representations of prime power degree
0 references
0.84668267
0 references
0.8457365
0 references
0.8255552
0 references
0.8194275
0 references