Asymptotics of minimax risk estimates of distribution density in \(L_ 2\) (Q1060788)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Asymptotics of minimax risk estimates of distribution density in \(L_ 2\) |
scientific article; zbMATH DE number 3909507
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Asymptotics of minimax risk estimates of distribution density in \(L_ 2\) |
scientific article; zbMATH DE number 3909507 |
Statements
Asymptotics of minimax risk estimates of distribution density in \(L_ 2\) (English)
0 references
1984
0 references
Let \(X_ i\), \(i\in {\mathbb{N}}\), be i.i.d. random variables with density f(X), \(f\in L_ 2[-\pi,\pi]\). The asymptotics of \[ \delta^ 2_ N({\mathcal F})=\inf_{\hat f}\sup_{f\in {\mathcal F}}E_ f\| \hat f- f\|_{L^ 2} \] are considered, when \({\mathcal F}\) is the class of densities whose Fourier coefficients belong to a parallelepiped from the space \(\ell_ 2\).
0 references
asymptotics
0 references
minimax risks
0 references
density estimators
0 references
integrated mean square error
0 references
L sub 2 spaces
0 references
Fourier coefficients
0 references
0.9351543
0 references
0.91985095
0 references
0.9192235
0 references
0.91400355
0 references
0.90319014
0 references