Asymptotics of minimax risk estimates of distribution density in \(L_ 2\) (Q1060788)

From MaRDI portal





scientific article; zbMATH DE number 3909507
Language Label Description Also known as
English
Asymptotics of minimax risk estimates of distribution density in \(L_ 2\)
scientific article; zbMATH DE number 3909507

    Statements

    Asymptotics of minimax risk estimates of distribution density in \(L_ 2\) (English)
    0 references
    0 references
    1984
    0 references
    Let \(X_ i\), \(i\in {\mathbb{N}}\), be i.i.d. random variables with density f(X), \(f\in L_ 2[-\pi,\pi]\). The asymptotics of \[ \delta^ 2_ N({\mathcal F})=\inf_{\hat f}\sup_{f\in {\mathcal F}}E_ f\| \hat f- f\|_{L^ 2} \] are considered, when \({\mathcal F}\) is the class of densities whose Fourier coefficients belong to a parallelepiped from the space \(\ell_ 2\).
    0 references
    asymptotics
    0 references
    minimax risks
    0 references
    density estimators
    0 references
    integrated mean square error
    0 references
    L sub 2 spaces
    0 references
    Fourier coefficients
    0 references

    Identifiers