Completeness theorems for some intermediate predicate calculi (Q1061734)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Completeness theorems for some intermediate predicate calculi |
scientific article; zbMATH DE number 3910373
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Completeness theorems for some intermediate predicate calculi |
scientific article; zbMATH DE number 3910373 |
Statements
Completeness theorems for some intermediate predicate calculi (English)
0 references
1983
0 references
Completeness theorems, with respect to Kripke's semantics, are given for two kinds of negation-free intermediate predicate calculi and for one with negation. PD is the usual positive predicate calculus with the additional axiom \(\forall x(\alpha (x)\vee \beta)\to \forall x\alpha (x)\vee \beta\). The calculi treated in this paper are: (1) \(PD+(\alpha \to \beta)\vee (\beta \to \alpha)\), (2) \(PD+\alpha_ 0\vee (\alpha_ 0\to \alpha_ 1)\vee...\vee (\alpha_ n\to \alpha_{n+1})\), (3) \((1)+intuitionistic\) \(negation+\neg \forall x\alpha \to \exists x\neg \alpha\).
0 references
Kripke semantics
0 references
negation-free intermediate predicate calculi
0 references
positive predicate calculus
0 references
0 references
0.91879237
0 references
0.9137018
0 references