Completeness theorems for some intermediate predicate calculi (Q1061734)

From MaRDI portal





scientific article; zbMATH DE number 3910373
Language Label Description Also known as
English
Completeness theorems for some intermediate predicate calculi
scientific article; zbMATH DE number 3910373

    Statements

    Completeness theorems for some intermediate predicate calculi (English)
    0 references
    0 references
    1983
    0 references
    Completeness theorems, with respect to Kripke's semantics, are given for two kinds of negation-free intermediate predicate calculi and for one with negation. PD is the usual positive predicate calculus with the additional axiom \(\forall x(\alpha (x)\vee \beta)\to \forall x\alpha (x)\vee \beta\). The calculi treated in this paper are: (1) \(PD+(\alpha \to \beta)\vee (\beta \to \alpha)\), (2) \(PD+\alpha_ 0\vee (\alpha_ 0\to \alpha_ 1)\vee...\vee (\alpha_ n\to \alpha_{n+1})\), (3) \((1)+intuitionistic\) \(negation+\neg \forall x\alpha \to \exists x\neg \alpha\).
    0 references
    Kripke semantics
    0 references
    negation-free intermediate predicate calculi
    0 references
    positive predicate calculus
    0 references
    0 references

    Identifiers