Sur une inégalité isopérimétrique qui généralise celle de Paul Lévy-Gromov. (On an isoperimetric inequality which generalizes that of Paul Lévy-Gromov) (Q1062019)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Sur une inégalité isopérimétrique qui généralise celle de Paul Lévy-Gromov. (On an isoperimetric inequality which generalizes that of Paul Lévy-Gromov) |
scientific article; zbMATH DE number 3911213
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Sur une inégalité isopérimétrique qui généralise celle de Paul Lévy-Gromov. (On an isoperimetric inequality which generalizes that of Paul Lévy-Gromov) |
scientific article; zbMATH DE number 3911213 |
Statements
Sur une inégalité isopérimétrique qui généralise celle de Paul Lévy-Gromov. (On an isoperimetric inequality which generalizes that of Paul Lévy-Gromov) (English)
0 references
1985
0 references
In this paper we improve the Paul Levy-Gromov isoperimetric inequality. If we define h(\(\beta)\) for \(0\leq \beta \leq 1\) to be the infimum of vol(\(\partial \Omega)\) for domains \(\Omega\) such that \(vol(\Omega)=\beta vol(M)\) on a compact manifold M, we compare h(\(\beta)\) to the same function (which is known) on a sphere of radius R depending on the quantities d and \(r_{\min}\times d^ 2\) (where \(r_{\min}\) is the infimum of the lowest eigenvalue of the Ricci curvature on M and d its diameter). Some applications to lower bounds and pinching results for the first eigenvalue of the Laplacian are given as well as upper estimates of the heat kernel.
0 references
isoperimetric inequality
0 references
Ricci curvature
0 references
first eigenvalue of the Laplacian
0 references
heat kernel
0 references
0.8906832
0 references
0.8882781
0 references
0.8691886
0 references
0 references