Automorphismen und Modulraum Galoisscher dreiblättriger Überlagerungen (Q1063151)

From MaRDI portal





scientific article; zbMATH DE number 3914709
Language Label Description Also known as
English
Automorphismen und Modulraum Galoisscher dreiblättriger Überlagerungen
scientific article; zbMATH DE number 3914709

    Statements

    Automorphismen und Modulraum Galoisscher dreiblättriger Überlagerungen (English)
    0 references
    0 references
    0 references
    1985
    0 references
    Let \(M_ g\) denote the space of isomorphism classes of compact Riemann surfaces of genus g. Consider the subset \(M^ 3_ g\) of \(M_ g\) which consists of those Riemann surfaces that admit a threefold Galois cover over \({\mathbb{P}}^ 1\). In this work the space \(M^ 3_ g\) is parametrized using branch points of the Galois covers. It turns out that \(M^ 3_ 3\) is connected but for \(g>3\) \(M^ 3_ g\) is not connected. The authors give a formula for the number of components of a general \(M^ 3_ g\) and give rather explicit descriptions of them as well. The paper ends with a list of the automorphism groups of certain threefold Galois covers of \({\mathbb{P}}^ 1\) of genus g for \(g=3,4,5,6\).
    0 references
    moduli spaces
    0 references
    Weierstrass-points
    0 references
    automorphism groups of Riemann surfaces
    0 references
    threefold Galois cover
    0 references
    0 references
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references