On fundamental sets over a finite field (Q1064350)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On fundamental sets over a finite field |
scientific article; zbMATH DE number 3918502
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On fundamental sets over a finite field |
scientific article; zbMATH DE number 3918502 |
Statements
On fundamental sets over a finite field (English)
0 references
1985
0 references
Let \(\alpha \in GF(p^ n)\). The authors define \(A_{\alpha}=\{\alpha,\alpha +1,...,\alpha +p-1\}\), \({}^*A_{\alpha}=\cup^{p-1}_{l=1}A_{l\alpha}\), \(\bar A_{\alpha}=\cup^{n-1}_{l=0}{}^*A_{\alpha}^{p^ l}\), and \(\alpha\sim\beta\) iff \(\bar A_{\alpha}=\bar A_{\beta}\). The equivalence relation \(\sim\) partitions the field \(GF(p^ n)\) into fundamental classes. To study the fundamental classes the authors discuss the solutions of the equations of the form \(x^{p^ m}=ax+b\). In the last section they investigate the number of fundamental classes for some finite fields.
0 references
fundamental sets
0 references
partitions
0 references
fundamental classes
0 references
finite fields
0 references