La formule de Poisson-Plancherel pour un groupe de Takiff associé à un groupe de Lie semi-simple à centre fini. (The Poisson-Plancherel formula for a Takiff group associated to a semi-simple Lie group with finite centre) (Q1064505)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: La formule de Poisson-Plancherel pour un groupe de Takiff associé à un groupe de Lie semi-simple à centre fini. (The Poisson-Plancherel formula for a Takiff group associated to a semi-simple Lie group with finite centre) |
scientific article; zbMATH DE number 3919038
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | La formule de Poisson-Plancherel pour un groupe de Takiff associé à un groupe de Lie semi-simple à centre fini. (The Poisson-Plancherel formula for a Takiff group associated to a semi-simple Lie group with finite centre) |
scientific article; zbMATH DE number 3919038 |
Statements
La formule de Poisson-Plancherel pour un groupe de Takiff associé à un groupe de Lie semi-simple à centre fini. (The Poisson-Plancherel formula for a Takiff group associated to a semi-simple Lie group with finite centre) (English)
0 references
1984
0 references
The semi-direct product of a semi-simple Lie group with finite centre by its Lie algebra is called a Takiff group. This paper establishes the Plancherel formula for such a group, as conjectured by \textit{M. Vergne} [cf. Ann. Math., II. Ser. 115, 639-666 (1982; Zbl 0501.43006)]. The main technical problem is to define an analogue of orbital integrals which makes sense at singular points, and to calculate its Fourier transform.
0 references
Poisson-Plancherel formula
0 references
Takiff group
0 references
orbital integrals
0 references
Fourier transform
0 references