Konvexe Bereiche kleinster Oberfläche bei gegebener Dicke. (Convex domains of given thickness with smallest surface area) (Q1064537)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Konvexe Bereiche kleinster Oberfläche bei gegebener Dicke. (Convex domains of given thickness with smallest surface area) |
scientific article; zbMATH DE number 3919188
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Konvexe Bereiche kleinster Oberfläche bei gegebener Dicke. (Convex domains of given thickness with smallest surface area) |
scientific article; zbMATH DE number 3919188 |
Statements
Konvexe Bereiche kleinster Oberfläche bei gegebener Dicke. (Convex domains of given thickness with smallest surface area) (English)
0 references
1985
0 references
A till now unconfirmed conjecture is proved analytically: The balls are in \(E^ n\) (n\(\geq 3)\) the single convex domains of given thickness with smallest surface area. The proof is effected by means of a generalized duality theory of restricted multidimensional variational problems in parametric form.
0 references
convex domains of given thickness with smallest surface area
0 references
generalized duality theory
0 references
0.8424463
0 references
0.83822495
0 references
0.8380133
0 references
0.8344607
0 references
0.8272071
0 references
0.82196665
0 references
0.8210546
0 references