Quadrature rules for Prandtl's integral equation (Q1064730)

From MaRDI portal





scientific article; zbMATH DE number 3921809
Language Label Description Also known as
English
Quadrature rules for Prandtl's integral equation
scientific article; zbMATH DE number 3921809

    Statements

    Quadrature rules for Prandtl's integral equation (English)
    0 references
    0 references
    0 references
    0 references
    1986
    0 references
    We construct an interpolatory quadrature formula of the type \[ \int^{1}_{-1}f'(x)/(y-x)dx\approx \sum^{n}_{i=1}w_{ni}(y)f(x_{ni}), \] where \(f(x)=(1- x)^{\alpha}(1+x)^{\beta}f_ 0(x)\), \(\alpha,\beta >0\), and \(\{x_{ni}\}\) are the n zeros of the n-th degree Chebyshev polynomial of the first kind, \(T_ n(x)\). We also give a convergence result and examine the behavior of the quantity \(\sum^{n}_{i=1}| w_{ni}(y)|\) as \(n\to \infty\).
    0 references
    Prandtl's integral equation
    0 references
    interpolatory quadrature formula
    0 references
    Cauchy principal value integral
    0 references
    convergence
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references