On Fourier transforms of functions supported on sets of finite Lebesgue measure (Q1065307)

From MaRDI portal





scientific article; zbMATH DE number 3921211
Language Label Description Also known as
English
On Fourier transforms of functions supported on sets of finite Lebesgue measure
scientific article; zbMATH DE number 3921211

    Statements

    On Fourier transforms of functions supported on sets of finite Lebesgue measure (English)
    0 references
    0 references
    1985
    0 references
    Let G be a locally compact Abelian group with dual group \(\hat G.\) Denote the Haar measure on G and \(\hat G\) by m and \(\hat m,\) respectively. \textit{T. Matolcsi} and \textit{J. Szücs} [C. R. Acad. Sci., Paris, Sér. A 277, 841-843 (1973; Zbl 0266.43002)] have proved that if \(f\in L^ 1(G)\) and \[ (*)\quad m\{x\in G:f(x)\neq 0\}\cdot \hat m\{\gamma \in \hat G:\hat f(\gamma)\neq 0\}<1, \] then \(f=0\) a.e. [m], where \(\hat f\) denotes the Fourier transform of f. In this note the author proves that if \(G={\mathbb{R}}^ n\), then the condition (*) in the Matolcsi-Szücs result can be replaced by \(m\{x\in {\mathbb{R}}^ n:f(x)\neq 0\}<\infty\) and \(\hat m\{\) \(\gamma\in {\mathbb{R}}^ n:\hat f(\gamma)\neq 0\}<\infty\).
    0 references
    locally compact Abelian group
    0 references
    Haar measure
    0 references

    Identifiers