Local theorems for integer-valued multiplicative functions with local conditions on powers of primes (Q1065858)

From MaRDI portal





scientific article; zbMATH DE number 3922781
Language Label Description Also known as
English
Local theorems for integer-valued multiplicative functions with local conditions on powers of primes
scientific article; zbMATH DE number 3922781

    Statements

    Local theorems for integer-valued multiplicative functions with local conditions on powers of primes (English)
    0 references
    1984
    0 references
    Let \(f\) be an integer-valued multiplicative function. Assuming the existence of a limiting distribution of the values \(f(p^ j)\) in the form \[ \#\{p\leq x,\;f(p^ j)=m\} = c_{mj} x^ a (\log^{-1}x + \text{smaller terms} + O(\log^{-2-\varepsilon}x)), \] a local limit law for \(f\) is found in the form \[ \#\{n\leq x,\;f(n)=m\} \sim cx^{\alpha} (\log x)^{\beta} (\log\log x)^{\gamma}; \] a slightly more general result is announced without proof.
    0 references
    multiplicative function
    0 references
    limiting distribution
    0 references
    local limit law
    0 references
    0 references
    0 references

    Identifiers