Formules intégrales pour certains invariants locaux des espaces analytiques complexes (Q1067045)

From MaRDI portal





scientific article; zbMATH DE number 3927338
Language Label Description Also known as
English
Formules intégrales pour certains invariants locaux des espaces analytiques complexes
scientific article; zbMATH DE number 3927338

    Statements

    Formules intégrales pour certains invariants locaux des espaces analytiques complexes (English)
    0 references
    0 references
    1984
    0 references
    In the first part of this article, the author generalizes the result of Langevin-Lê on the (double) limit of the curvature integral near a singular point of an equidimensional analytic set. The second part gives the local Euler obstruction for a linear generic section of an equidimensional analytic set as a limit of a curvature integral. This extends the classical formula for the ''Lelong number'' and also a result by Varchenko on isolated surface singularity in \({\mathbb{C}}^ 3.\) In the last part, the author proves an exact formula for the local Euler obstruction and shows that this leads to a direct proof of the Gonzalès-Verdier formula.
    0 references
    plane sections
    0 references
    curvature integral
    0 references
    local Euler obstruction
    0 references
    isolated surface singularity
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references