Sur la valeur au bord du noyau de Poisson d'un domaine borné symétrique (Q1067055)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Sur la valeur au bord du noyau de Poisson d'un domaine borné symétrique |
scientific article; zbMATH DE number 3927381
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Sur la valeur au bord du noyau de Poisson d'un domaine borné symétrique |
scientific article; zbMATH DE number 3927381 |
Statements
Sur la valeur au bord du noyau de Poisson d'un domaine borné symétrique (English)
0 references
1984
0 references
The author gives a very elegant proof of an older result of M. Stoll on the asymptotic behaviour of the Poisson kernel of a bounded symmetric domain D. Assume D is star shaped with respect to the origin, u, v two distinct points in the Shilov boundary of D, then \(P(rv,u)\approx (1- r)^{-p}\) as \(r\uparrow 1.\) Here \(p=n-2n/\ell,\) where \(n=\dim_{{\mathbb{C}}} D,\) \(\ell =\) rank D.
0 references
star shaped domain
0 references
asymptotic behaviour of the Poisson kernel of a bounded symmetric
0 references
domain
0 references
Shilov boundary
0 references
asymptotic behaviour of the Poisson kernel of a bounded symmetric domain
0 references