Problèmes de Neumann quasilinéaires. (Quasilinear Neumann problems) (Q1067093)

From MaRDI portal





scientific article; zbMATH DE number 3927472
Language Label Description Also known as
English
Problèmes de Neumann quasilinéaires. (Quasilinear Neumann problems)
scientific article; zbMATH DE number 3927472

    Statements

    Problèmes de Neumann quasilinéaires. (Quasilinear Neumann problems) (English)
    0 references
    0 references
    1985
    0 references
    The main result is the existence and uniqueness of a solution (u,\(\lambda)\) satisfying \[ (1)\quad -a_{ij}u_{x_ ix_ j}(x)+\phi (x,Du(x))=\lambda \quad in\quad \partial \Omega;\quad \frac{\partial u}{\partial \gamma}=0\quad on\quad \partial \Omega,\quad \int_{\Omega}udx=0. \] Problem (1) is approximated by \[ - a_{ij}u^{\alpha}_{x_ ix_ j}(x)+\phi (x,Du^{\alpha}(x))+\alpha u^{\alpha}(x)=0\quad in\quad \partial \Omega;\quad \frac{\partial u^{\alpha}}{\partial \gamma}=0\quad on\quad \partial \Omega. \] A priori estimates on \(Du^{\alpha}\) are obtained by use of Bernstein-type comparison functions. Then the convergence results are as follows: \[ u^{\alpha}-\frac{1}{| \Omega |}\int_{\Omega}u^{\alpha}dx\to u\quad and\quad \frac{\alpha}{| \Omega |}\int_{\Omega}u^{\alpha}dx\to -\lambda. \]
    0 references
    ergodic control
    0 references
    reflected diffusion
    0 references
    quasilinear partial
    0 references
    differential equation
    0 references
    existence
    0 references
    uniqueness
    0 references
    A priori estimates
    0 references
    Bernstein-type comparison functions
    0 references
    convergence
    0 references

    Identifiers