Étude asymptotique de certains mouvements browniens complexes avec drift (Q1067314)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Étude asymptotique de certains mouvements browniens complexes avec drift |
scientific article; zbMATH DE number 3928046
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Étude asymptotique de certains mouvements browniens complexes avec drift |
scientific article; zbMATH DE number 3928046 |
Statements
Étude asymptotique de certains mouvements browniens complexes avec drift (English)
0 references
1986
0 references
We consider a process in the plane solution of the stochastic differential equation: \[ dX_ t=dB_ t+b(X_ t)dt \] where B denotes a two-dimensional Brownian motion and the function \(b:R^ 2\to R^ 2\) satisfies some integrability conditions which ensure that the process X is recurrent. Limit theorems are proved for the winding numbers of B around several points of the plane, which extend \textit{J. W. Pitman} and \textit{M. Yor}'s result in the case without drift [Bull. Am. Math. Soc., New Ser. 10, 109-111 (1984; Zbl 0535.60073) and ''Asymptotic laws of planar Brownian motion.'' Ann. Probab., to appear]. Some limit theorems are also proved for the hitting times of small disks centered at distinct points of the plane, when the radius goes to 0. Similar results hold for Brownian motion with bounded drift on the sphere \(S^ 2\).
0 references
winding numbers
0 references
hitting times of small disks
0 references
0.90995276
0 references
0.90635043
0 references
0.8996762
0 references
0.88542736
0 references
0.87779444
0 references
0.8776196
0 references