Universal central extensions of Chevalley algebras over Laurent polynomial rings and GIM Lie algebras (Q1068180)

From MaRDI portal





scientific article; zbMATH DE number 3929234
Language Label Description Also known as
English
Universal central extensions of Chevalley algebras over Laurent polynomial rings and GIM Lie algebras
scientific article; zbMATH DE number 3929234

    Statements

    Universal central extensions of Chevalley algebras over Laurent polynomial rings and GIM Lie algebras (English)
    0 references
    0 references
    0 references
    1985
    0 references
    The authors give an explicit description of the universal central extension of the Chevalley algebra \(R\otimes {\mathfrak g}\), where R is the Laurent polynomial ring of n variables over a field F of characteristic zero and \({\mathfrak g}\) is a finite dimensional split Lie algebra over F. Define the n-fold extended Cartan matrix by \(A^{[n]}=(2(\alpha_ i,\alpha_ j)/(\alpha_ i,\alpha_ i))_{1\leq i,j\leq \ell +n}\) where \(\alpha_ i\) (1\(\leq i\leq \ell)\) are the simple roots of \({\mathfrak g}\) and \(\alpha_{\ell +j}=\beta\) (1\(\leq j\leq n)\), the negative highest root of \({\mathfrak g}\). Let \(L(A^{[n]})\) be the GIM Lie algebra generated by \(e_ i,f_ i,h_ i\) \((1\leq i\leq \ell +n)\) with certain defining relations. There is an extension \(\phi\) : L(A\({}^{[n]})\to R\otimes {\mathfrak g}\) defined by \(\phi (e_ i)=E_{\alpha_ i}\), \(\phi (e_{\ell +j})=X_ j\otimes E_{\beta}\), \(\phi (f_ i)=E_{-\alpha_ i}\), \(\phi (f_{\ell +j})=X_ j^{-1}\otimes E_{-\beta}\), \(\phi (h_ i)=H_{\alpha_ i}\), \(\phi (h_{\ell +j})=H_{\beta}\) (1\(\leq i\leq \ell\), \(1\leq j\leq n)\). Put \(J_ 1=Ker \phi\) and \(J=[L(A^{[n]}),J_ 1]\). Then \(L(A^{[n]})/J\) is a universal central extension of \(R\otimes {\mathfrak g}\) (Theorem 2). This result is an n-fold generalization of the case of the standard affine Lie algebra \(L(A^{[1]}).\) All theorems are stated without proofs.
    0 references
    universal central extension
    0 references
    Chevalley algebra
    0 references
    Laurent polynomial ring
    0 references
    GIM Lie algebra
    0 references

    Identifiers