Bounded double square functions (Q1069206)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Bounded double square functions |
scientific article; zbMATH DE number 3934123
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Bounded double square functions |
scientific article; zbMATH DE number 3934123 |
Statements
Bounded double square functions (English)
0 references
1986
0 references
We extend some recent work of S. Y. Chang, J. M. Wilson, and T. Wolff to the bidisc. For \(f\in L^ 1_{loc}({\mathbb{R}}^ 2)\), we determine the sharp order of local integrability obtained when the square function of f is in \(L^{\infty}\). The Calderòn-Torchinsky decomposition reduces the problem to the case of double dyadic martingales. Here we prove a vector- valued form of an inequality for dyadic martingales that yields the sharp dependence on p of \(C_ p\) in \(\| f\|_ p\leq C_ p\| Sf\|_ p\).
0 references
Calderòn-Torchinsky decomposition
0 references
double dyadic martingales
0 references
vector- valued form of an inequality for dyadic martingales
0 references