Some convergence theorems on a supercritical Galton-Watson process (Q1069569)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Some convergence theorems on a supercritical Galton-Watson process |
scientific article; zbMATH DE number 3936147
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Some convergence theorems on a supercritical Galton-Watson process |
scientific article; zbMATH DE number 3936147 |
Statements
Some convergence theorems on a supercritical Galton-Watson process (English)
0 references
1985
0 references
Let \(X=(X_ n,n\geq 0;X_ 0=1)\) be a supercritical Galton-Watson process with offspring mean m \((1<m<\infty)\) and variance \(\sigma^ 2\) \((0<\sigma^ 2<\infty)\). Let \(\hat m\) be the estimator of m given by \(\hat m=\sum^{N}_{n=0}X_{n+1}/\sum^{N}_{n=0}X_ n.\) The limiting distribution of \[ (\sum^{N}_{n=0}X_ n)^{- 1/2}(\sum^{N}_{n=0}X_{n+r}-\hat m^ r\sum^{N}_{n=0}X_ n),\quad r\geq 2, \] is derived. As an application of this result, some limit theorems leading ultimately to a parameter free result of statistical interest are also established.
0 references
goodness of fit tests
0 references
supercritical Galton-Watson process
0 references
parameter free result
0 references
0 references
0.9120552
0 references
0.9016304
0 references
0.90146863
0 references
0.9000882
0 references
0.8998988
0 references