Trigonometric entropies, Jensen difference divergence measures, and error bounds (Q1069901)

From MaRDI portal





scientific article; zbMATH DE number 3932935
Language Label Description Also known as
English
Trigonometric entropies, Jensen difference divergence measures, and error bounds
scientific article; zbMATH DE number 3932935

    Statements

    Trigonometric entropies, Jensen difference divergence measures, and error bounds (English)
    0 references
    1985
    0 references
    The authors introduce (without motivation) new trigonometric entropies and consider some applications of these entropies in information theory. Reviewer's comment: If f,h:[0,1]\(\to {\mathbb{R}}\) satisfy \[ (4)\quad h(f(p)f(q))=h(f(p))+h(f(q)) \] and \[ (5)\quad f(p+q)f(p-q)=f(p)^ 2- f(q)^ 2,\quad p,q\in [0,1], \] then \(h(f(p))=0\), \(p\in [0,1]\). (Setting \(q=0\) in (5) we get \(f(0)=0\); now (4) with \(q=0\) implies \(h(f(p))=0.)\) Thus \(h(f(p))=A \log f(p)\), \(A\neq 0\) is not a solution satisfying (4) and (5).
    0 references
    sine entropy
    0 references
    Jensen difference divergence measure
    0 references

    Identifiers