Conducive integral domains as pullbacks (Q1071068)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Conducive integral domains as pullbacks |
scientific article; zbMATH DE number 3937301
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Conducive integral domains as pullbacks |
scientific article; zbMATH DE number 3937301 |
Statements
Conducive integral domains as pullbacks (English)
0 references
1985
0 references
A ''conducive domain'' is a (commutative unitary integral) domain R, with quotient field F, such that for every overring T of R, \(R\subseteq T\subsetneqq F\), the conductor \((R:T)=\{x\in F;\quad xT\subseteq R\}\) is nonzero [cf. \textit{E. Bastida} and \textit{R. Gilmer}, Mich. Math. J. 20, 79- 95 (1973; Zbl 0239.13001) and \textit{D. E. Dobbs} and \textit{R. Fedder}, J. Alg. 86, 494-510 (1984; Zbl 0531.13002)]. The authors show how the pullback point of view [cf. \textit{M. Fontana}, Ann. Mat. Pura Appl., IV. Ser. 123, 331-355 (1980; Zbl 0443.13001)] can be used to give a complete description of Noetherian, Archimedean and accp conducive domains. Moreover, some necessary or sufficient criteria for conducive Mori domains are obtained.
0 references
integral closure
0 references
seminormalization
0 references
integral domain
0 references
conducive domain
0 references
pullback
0 references
accp
0 references
Mori domains
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0.8458767
0 references