Weighted inequalities for vector-valued anisotropic maximal functions (Q1071206)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Weighted inequalities for vector-valued anisotropic maximal functions |
scientific article; zbMATH DE number 3937766
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Weighted inequalities for vector-valued anisotropic maximal functions |
scientific article; zbMATH DE number 3937766 |
Statements
Weighted inequalities for vector-valued anisotropic maximal functions (English)
0 references
1985
0 references
Some classical results on Muckenhoupt weights are extended to the case where the maximal function is defined by means of anisotropic parallelepipeds instead of cubes. The method is based on a modification of the covering lemma of Calderon-Zygmund. Main result: Let \(a=(a_ 1,...,a_ n)\in R^ n_+,\) \(x\in R^ n\), \(t\in R_+\), and \(E(x,t)=\{z\in R^ n;\quad | z_ i-x_ i| \leq t^{a_ i}/2,\quad i=1,...,n\},\quad E=\{E(x,t);\quad x\in R^ n,\quad t\in R_+\}.\) For a measurable function \(f: R^ n\times Y\to R\), let \[ M_{(1)}f(x,y)=\sup_{t>0}(1/| E(x,t)|)\int_{E(x,t)}| f(z,y)| \quad dz,\quad x\in R^ n,\quad y\in Y. \] If \(1\leq p\leq q<\infty\), \(q>1\), and \(w\in A_ p(E)\), then there exists a positive constant c such that \[ \mu_ w\{x\in R^ n;\quad (\int_{Y}[M_{(1)}f(x,y)]^ q dv)^{1/q}>s\}\leq cs^{- p}\int_{R^ n}(\int_{Y}| f(x,y)|^ q dv)^{p/q} w(x)dx, \] for every \(s>0\) and every function f.
0 references
Muckenhoupt weights
0 references
maximal function
0 references
anisotropic parallelepipeds
0 references
Calderon-Zygmund
0 references