\(C^ V\)-symmetric Finsler spaces (Q1071324)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: \(C^ V\)-symmetric Finsler spaces |
scientific article; zbMATH DE number 3940153
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | \(C^ V\)-symmetric Finsler spaces |
scientific article; zbMATH DE number 3940153 |
Statements
\(C^ V\)-symmetric Finsler spaces (English)
0 references
1985
0 references
A Finsler space \(F_ n\) is called \(C^ V\)-symmetric if \(C_{ijk| \ell | m}=C_{ijk| m| \ell}\), where \(C_{ijk}(x,y)\) is the Cartan torsion tensor, and \(|\) denotes the V-covariant derivation (covariant derivation by \(y^ i)\). It is shown that a C-reducible and \(C^ V\)-symmetric \(F_ n\) is a Riemannian space \(V_ n\). As a consequence of this a \(C^ V\)-symmetric Randers-, or Kropina-space is also a \(V_ n\).
0 references
Finsler space
0 references
\(C^ V\)-symmetric
0 references
0 references
0.93083394
0 references
0.9308337
0 references
0 references
0 references