Polynomial values in linear recurrences. II (Q1074616)

From MaRDI portal





scientific article; zbMATH DE number 3948366
Language Label Description Also known as
English
Polynomial values in linear recurrences. II
scientific article; zbMATH DE number 3948366

    Statements

    Polynomial values in linear recurrences. II (English)
    0 references
    0 references
    0 references
    1986
    0 references
    [For part I, see Publ. Math. 31, 229-233 (1984; Zbl 0557.10010).] The authors study the question whether the terms of a binary recurrent sequence \(G_ 0,G_ 1,G_ 2,..\). given by \(G_{n+1}=AG_ n-BG_{n- 1}\), \(G_ 0,G_ 1,A,B\in {\mathbb{Z}}\) can assume values of the form P(x), \(x\in {\mathbb{Z}}\), P(X)\(\in {\mathbb{Z}}[X]\) fixed, infinitely often. It turns out that if \(B=-1\) then the polynomial P must be related to a Chebyshev polynomial.
    0 references
    second order linear recurrence sequence
    0 references
    binary linear recurrence
    0 references
    sequence
    0 references
    polynomial with integer coefficients
    0 references
    integral solutions
    0 references
    Chebyshev polynomial
    0 references
    0 references

    Identifiers