Fonction de Möbius d'un groupe fini et anneau de Burnside. (Möbius function of a finite group and the Burnside ring) (Q1075424)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Fonction de Möbius d'un groupe fini et anneau de Burnside. (Möbius function of a finite group and the Burnside ring) |
scientific article; zbMATH DE number 3950795
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Fonction de Möbius d'un groupe fini et anneau de Burnside. (Möbius function of a finite group and the Burnside ring) |
scientific article; zbMATH DE number 3950795 |
Statements
Fonction de Möbius d'un groupe fini et anneau de Burnside. (Möbius function of a finite group and the Burnside ring) (English)
0 references
1984
0 references
This paper gives various relationships between the structure and idempotents of the Burnside ring \(\Omega\) (G) of a finite group G and its lattice S(G) of subgroups, in particular the Möbius function of S(G). Crapo's formula for the Möbius function of a lattice in terms of the complements of a fixed point of the lattice is reproved for S(G). The Möbius function for nilpotent and soluble groups is set down explicitly, the latter in terms of the number of complements of the terms of a principal series for the group. If \(H\leq G\), and if \(| G:G'|_ o\) is the product of the distinct prime factors of \(| G:G'|\), then \(| G:G'|_ o\cdot \mu (H,G)\) is a multiple of \(| N_ G(H):H|\); and this last result is best possible.
0 references
lattice of subgroups
0 references
idempotents
0 references
Burnside ring
0 references
Möbius function
0 references
Crapo's formula
0 references
soluble groups
0 references
principal series
0 references