Semicontinuity for the local Hilbert function (Q1077475)

From MaRDI portal





scientific article; zbMATH DE number 3957268
Language Label Description Also known as
English
Semicontinuity for the local Hilbert function
scientific article; zbMATH DE number 3957268

    Statements

    Semicontinuity for the local Hilbert function (English)
    0 references
    0 references
    1987
    0 references
    Let X be a noetherian scheme, and let (\({\mathfrak O,m)}\) be the local ring of X at a point x. The Samuel and Hilbert functions are defined by \(S_{X,x}(n)=length {\mathfrak O}/{\mathfrak m}^{n+1}\), \(H_{X,x}(n)=length {\mathfrak m}^ n/{\mathfrak m}^{n+1}\). For every function \(f:\quad {\mathbb{Z}}^+\to {\mathbb{Z}}\) one defines: \((\Delta f)(n)=f(n)-f(n-1)\) for \(n\geq 1\), \((\Delta f)(0)=f(0)\). Our purpose it to prove the following semicontinuity theorem: Let \({\mathfrak O}\) be a local excellent ring, \(X=Spec {\mathfrak O}\) and let x be the closed point of X. If y is the generic point of an r-dimensional integral subscheme of X, then \(S_{X,y}(n)\leq \Delta^ rS_{X,x}(n)\). - Moreover, we prove that the Hilbert function stabilizes in any sequence of permissible blowing-ups.
    0 references
    semicontinuity for the local Hilbert function
    0 references
    Samuel functions
    0 references
    local excellent ring
    0 references
    permissible blowing-ups
    0 references
    normal flatness
    0 references

    Identifiers