Fonctions harmoniques sur les graphes. (Harmonic functions on graphs) (Q1077593)

From MaRDI portal





scientific article; zbMATH DE number 3957588
Language Label Description Also known as
English
Fonctions harmoniques sur les graphes. (Harmonic functions on graphs)
scientific article; zbMATH DE number 3957588

    Statements

    Fonctions harmoniques sur les graphes. (Harmonic functions on graphs) (English)
    0 references
    0 references
    1986
    0 references
    Let G be a finite connected graph. A 2-edge-connected component C is extremal if \(G\setminus C\) is connected. In this paper we show that the maximum m(G) of the dimension of \({\mathcal H}(G)\), when (G,\({\mathcal H}^*)\) is a harmonic space, is determined by the space of flows \({\mathcal F}(G)\) and the number c(G) of extremal 2-edge-connected components of \(G: m(G)=\dim {\mathcal F}(G)+\max (1,c(G)-1).\)
    0 references
    finite connected graph
    0 references
    harmonic space
    0 references
    extremal 2-edge-connected components
    0 references
    maximal dimension
    0 references
    0 references
    0 references
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references