On \(Z_ q\)-equivariant immersions for \(q=2^ r\) (Q1077764)

From MaRDI portal





scientific article; zbMATH DE number 3958255
Language Label Description Also known as
English
On \(Z_ q\)-equivariant immersions for \(q=2^ r\)
scientific article; zbMATH DE number 3958255

    Statements

    On \(Z_ q\)-equivariant immersions for \(q=2^ r\) (English)
    0 references
    0 references
    1985
    0 references
    Let T be the standard complex 1-dimensional representation of \({\mathbb{Z}}/q\). For which \(m>2n\) does there exists a \({\mathbb{Z}}/q\)-equivariant immersion of the sphere \(S((n+1)T)\) into \({\mathbb{R}}^ m\oplus k\cdot T ?\) The author gives some nonexistence results for \(q=2^ r\) using \(\gamma\)- operations on lens spaces and S-duality methods for stunted lens spaces.
    0 references
    \({\mathbb{Z}}/q\)-equivariant immersion of the sphere
    0 references
    \(\gamma \) -operations on lens spaces
    0 references
    S-duality
    0 references
    stunted lens spaces
    0 references
    0 references
    0 references

    Identifiers