On \(Z_ q\)-equivariant immersions for \(q=2^ r\) (Q1077764)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On \(Z_ q\)-equivariant immersions for \(q=2^ r\) |
scientific article; zbMATH DE number 3958255
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On \(Z_ q\)-equivariant immersions for \(q=2^ r\) |
scientific article; zbMATH DE number 3958255 |
Statements
On \(Z_ q\)-equivariant immersions for \(q=2^ r\) (English)
0 references
1985
0 references
Let T be the standard complex 1-dimensional representation of \({\mathbb{Z}}/q\). For which \(m>2n\) does there exists a \({\mathbb{Z}}/q\)-equivariant immersion of the sphere \(S((n+1)T)\) into \({\mathbb{R}}^ m\oplus k\cdot T ?\) The author gives some nonexistence results for \(q=2^ r\) using \(\gamma\)- operations on lens spaces and S-duality methods for stunted lens spaces.
0 references
\({\mathbb{Z}}/q\)-equivariant immersion of the sphere
0 references
\(\gamma \) -operations on lens spaces
0 references
S-duality
0 references
stunted lens spaces
0 references