A basic hypergeometric transformation of Ramanujan and a generalization (Q1078382)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A basic hypergeometric transformation of Ramanujan and a generalization |
scientific article; zbMATH DE number 3959959
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A basic hypergeometric transformation of Ramanujan and a generalization |
scientific article; zbMATH DE number 3959959 |
Statements
A basic hypergeometric transformation of Ramanujan and a generalization (English)
0 references
1986
0 references
By considering the following hypergeometric series \[ (- bq)_{\infty}\sum^{\infty}_{n=0}\frac{q^{n(n+1)/2} (-(\lambda /a))_ na^ n}{(q\quad)_ n(-bq)_ n}, \] the authors give yet another proof of the well-known transformation due to Ramanujan: \[ (- bq)_{\infty}\sum^{\infty}_{n=0}\frac{q^{n^ 2}\lambda^ n}{(q)_ n(-bq)_ n}=\sum^{\quad \infty}_{n=0}\frac{q^{n(n+1)/2} (-(\lambda /b))_ nb^ n}{(q)_ n}, \] where \((a)_{\infty}=(a,q)_{\infty}=\prod^{\infty}_{n=0}(1-aq^ n)\).
0 references
basic hypergeometric series
0 references
Euler's formula
0 references
Ramanujan
0 references
0.94241863
0 references
0.92100245
0 references
0.92099905
0 references
0.91556996
0 references
0.9057596
0 references
0.9052429
0 references
0.90479577
0 references