On the additive structure of the inverses of banded matrices (Q1079624)

From MaRDI portal





scientific article; zbMATH DE number 3964052
Language Label Description Also known as
English
On the additive structure of the inverses of banded matrices
scientific article; zbMATH DE number 3964052

    Statements

    On the additive structure of the inverses of banded matrices (English)
    0 references
    1986
    0 references
    Using the results of \textit{W. W. Barrett} and \textit{P. J. Feinsilver} [ibid. 41, 111-130 (1981; Zbl 0472.15004)] the author proves the following main result: Let B be an \(n\times n\) proper \((2k+1)\)-diagonal matrix. Then \(B^{-1}=\sum^{k}_{p=1}[(u_ pv^ T_ p)\circ E_ n+(x_ py^ T_ p)\circ L_ n],\) where \(u_ p,v_ p,x_ p,y_ p\) are n-vectors, \(E_ n\underline\triangle (e_{ij})\), \(e_{ij}\underline\triangle 1\) if \(i\leq j\), and \(\underline\triangle 0\) if \(i>j\), \(L_ n\underline\triangle E^ T_ n-I_ n\) \((I_ n\) is the unit matrix) and \(\circ\) denotes the Hadamard product. If in addition B is symmetric, then \(B^{-1}\) may be expressed as a sum of k symmetric matrices belonging to the class of inverses of symmetric irreducible tridiagonal matrices. Two examples are given. The results may be applied for the resolution of constant coefficient banded linear systems in VLSI models.
    0 references
    band matrices
    0 references
    inverses
    0 references
    symmetric irreducible tridiagonal matrices
    0 references
    banded linear systems
    0 references
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references