Extremal continua: A class of non-separating subcontinua (Q1079840)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Extremal continua: A class of non-separating subcontinua |
scientific article; zbMATH DE number 3964962
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Extremal continua: A class of non-separating subcontinua |
scientific article; zbMATH DE number 3964962 |
Statements
Extremal continua: A class of non-separating subcontinua (English)
0 references
1986
0 references
The notion of a terminal continuum, as defined by \textit{D. E. Bennett} and \textit{J. B. Fugate} [Diss. Math. 149 (1977; Zbl 0354.54017)] is used to introduce extremal continua, a class of non-separating subcontinua of a continuum. An extremal continuum can be characterized as a proper subcontinuum Y of a metric continuum x with the property that Y contains a point of irreducibility of each irreducible subcontinuum of X that meets Y. If Y is an extremal subcontinuum of X, then Y does not separate any subcontinuum of X containing Y; moreover, if Y is a proper subcontinuum of X and Y does not cut any subcontinuum of X containing Y, then Y is extremal in X.
0 references
absolutely non-cutting subcontinuum
0 references
non-cutting subcontinuum
0 references
absolutely non-separating subcontinuum
0 references
end point in the classical sense
0 references
extremal subcontinuum
0 references
continuumwise connectedness
0 references
terminal continuum
0 references
extremal continua
0 references
non-separating subcontinua
0 references
point of irreducibility
0 references