On Krasner's criteria for the first case of Fermat's last theorem (Q1080454)

From MaRDI portal





scientific article; zbMATH DE number 3966181
Language Label Description Also known as
English
On Krasner's criteria for the first case of Fermat's last theorem
scientific article; zbMATH DE number 3966181

    Statements

    On Krasner's criteria for the first case of Fermat's last theorem (English)
    0 references
    0 references
    1986
    0 references
    The author uses an adaptation of Krasner's method [\textit{M. Krasner}, C. R. Acad. Sci., Paris 199, 256--258 (1934; Zbl 0010.00702)] to prove that if the first case of Fermat's last theorem is false for the prime \(p\), then \(p\) divides the numerator of the Bernoulli number \(B_{p-1-n}\) for all \(n\) between \(1\) and \([\sqrt{\log p/\log \log p}]\). This improves a result of \textit{Z. Ĺ ami} [Glas. Mat., III. Ser. 21(41), 259--269 (1986; Zbl 0621.10012)] who gives the same result for all \(n\) up to \([(\log p)^{2/5}]\).
    0 references
    p-divisibility properties
    0 references
    numerators
    0 references
    first case of Fermat's last theorem
    0 references
    Bernoulli number
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references