Une mesure de la déviation quadratique d'estimateurs non paramétriques. (A measure of quadratic deviation of nonparametric estimators) (Q1080581)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Une mesure de la déviation quadratique d'estimateurs non paramétriques. (A measure of quadratic deviation of nonparametric estimators) |
scientific article; zbMATH DE number 3967678
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Une mesure de la déviation quadratique d'estimateurs non paramétriques. (A measure of quadratic deviation of nonparametric estimators) |
scientific article; zbMATH DE number 3967678 |
Statements
Une mesure de la déviation quadratique d'estimateurs non paramétriques. (A measure of quadratic deviation of nonparametric estimators) (English)
0 references
1986
0 references
Let \(\theta\) be either the density f of \(U_ 1\) or the regression function \(r=E(V_ 1| U_ 1)\) or the product rf and let \({\hat \theta}{}_ n\) be a kernel-type or an orthogonal series estimator of \(\theta\) based on n identically distributed \({\mathbb{R}}^ d\)-valued random variables \((U_ i,V_ i)_{1\leq i\leq n}\). Nonrandom sequences \((a_ n)_{n\in {\mathbb{N}}^*}\) and \((b_ n)_{n\in {\mathbb{N}}^*}\) are determined such that the statistics \[ (a_ n\int | {\hat \theta}_ n-\theta | d\mu -b_ n)_{n\in {\mathbb{N}}^*}, \] converge to a Gaussian distribution \(N(0,\sigma^ 2)\) (\(\mu\) is positive, \(\sigma\)- finite and absolutely continuous w.r.t. the Lebesgue measure). Both independent and mixing case are dealt with. It must be noticed that \(a_ n\), \(b_ n\) and \(\sigma\) do not depend on the mixing function. The basic tools of the paper are Gaussian approximations in Hilbert spaces and the Karhunen-Loeve expansion.
0 references
kernel-type estimator
0 references
density estimation
0 references
nonparametric regression
0 references
mean square error
0 references
asymptotic normality
0 references
orthogonal series estimator
0 references
Gaussian distribution
0 references
mixing
0 references
Gaussian approximations
0 references
Hilbert spaces
0 references
Karhunen- Loeve expansion
0 references