On the use of internal variable constitutive equations in transient forming processes (Q1081357)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the use of internal variable constitutive equations in transient forming processes |
scientific article; zbMATH DE number 3970198
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the use of internal variable constitutive equations in transient forming processes |
scientific article; zbMATH DE number 3970198 |
Statements
On the use of internal variable constitutive equations in transient forming processes (English)
0 references
1987
0 references
Constitutive relations which utilize internal variables to characterize the changing state of a material during a deformation process have been proposed by several investigators in recent years. The internal variable models offer the advantage of extending the range of conditions over which a single material description is applicable at the computational cost of integrating the evolution equations for the internal variables. A method is presented for including a constitutive equation utilizing a single scalar internal variable in a model for transient thermomechanical phenomena. Galerkin's method is used to obtain the finite-element formulation for the time integration of the evolution equation. As an illustration of the technique Hart's model is implemented in a simplified form where the anelastic strain has been neglected leaving only the scalar internal variable. A method for determining material parameters is outlined in the context of a particular material (304 Stainless Steel). The material parameters are determined entirely from data independent of the application.
0 references
upset welding
0 references
changing state
0 references
deformation process
0 references
constitutive equation
0 references
single scalar internal variable
0 references
transient thermomechanical phenomena
0 references
Galerkin's method
0 references
finite-element formulation for the time integration of the evolution equation
0 references
Hart's model
0 references