Complete sufficiency and maximum likelihood estimation for the two- parameter negative binomial distribution (Q1082004)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Complete sufficiency and maximum likelihood estimation for the two- parameter negative binomial distribution |
scientific article; zbMATH DE number 3971972
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Complete sufficiency and maximum likelihood estimation for the two- parameter negative binomial distribution |
scientific article; zbMATH DE number 3971972 |
Statements
Complete sufficiency and maximum likelihood estimation for the two- parameter negative binomial distribution (English)
0 references
1986
0 references
The estimation problem of both parameters in the two-parameter negative binomial distribution is discussed in the finite sample case. It is shown that the minimal sufficient statistic is not complete, and that the maximum likelihood estimator (mle) for the shape parameter k exists if the sample variance is strictly larger than the sample mean. Contours and 3-dimensional plots of the log-likelihood function indicate that the mle for k is highly non-robust.
0 references
completeness
0 references
order statistic
0 references
two-parameter negative binomial distribution
0 references
minimal sufficient statistic
0 references
maximum likelihood estimator
0 references
shape parameter
0 references
sample variance
0 references
sample mean
0 references
Contours
0 references