Diviseurs premiers de suites récurrentes linéaires. (Prime divisors of linear recurrence sequences) (Q1082361)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Diviseurs premiers de suites récurrentes linéaires. (Prime divisors of linear recurrence sequences) |
scientific article; zbMATH DE number 3972950
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Diviseurs premiers de suites récurrentes linéaires. (Prime divisors of linear recurrence sequences) |
scientific article; zbMATH DE number 3972950 |
Statements
Diviseurs premiers de suites récurrentes linéaires. (Prime divisors of linear recurrence sequences) (English)
0 references
1986
0 references
Let P be a polynomial with rational integer coefficients. In this paper, we study the rational primes p with the following property: For any linear recurrent sequence of rational integers \(U=U_ n\), \(n\in {\mathbb{N}}\), with characteristic polynomial P, there is a positive integer n such that U(n)\(\equiv 0[p]\). We show, when the polynomial P is irreducible modulo p, that there is a procedure to decide when p satisfy this property. The procedure is connected with a cyclic difference set A depending on p and P.
0 references
prime divisors
0 references
linear recurrence sequences
0 references
polynomial
0 references
integer coefficients
0 references
cyclic difference set
0 references
0.9237095
0 references
0.89239806
0 references
0.89152575
0 references
0.8897015
0 references