A ring structure on \({\mathcal Z}_ 0({\mathbb{C}}^ 4)\) and an inverse twistor function formula (Q1082613)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A ring structure on \({\mathcal Z}_ 0({\mathbb{C}}^ 4)\) and an inverse twistor function formula |
scientific article; zbMATH DE number 3973743
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A ring structure on \({\mathcal Z}_ 0({\mathbb{C}}^ 4)\) and an inverse twistor function formula |
scientific article; zbMATH DE number 3973743 |
Statements
A ring structure on \({\mathcal Z}_ 0({\mathbb{C}}^ 4)\) and an inverse twistor function formula (English)
0 references
1986
0 references
The well-known Penrose's integral formula allows to express each free spinorial field verifying the Dirac equation by a ''twistorial function''. The present paper gives conversely an explicit way to compute a twistorial function associated to a field.
0 references
Penrose's integral formula
0 references
Dirac equation
0 references
twistorial function
0 references