Quelques propriétés des espaces homogènes sphériques. (Some properties of spherical homogeneous spaces) (Q1083503)

From MaRDI portal





scientific article; zbMATH DE number 3975115
Language Label Description Also known as
English
Quelques propriétés des espaces homogènes sphériques. (Some properties of spherical homogeneous spaces)
scientific article; zbMATH DE number 3975115

    Statements

    Quelques propriétés des espaces homogènes sphériques. (Some properties of spherical homogeneous spaces) (English)
    0 references
    1986
    0 references
    Let G be a connected reductive algebraic group over an algebraically closed field of characteristic zero, and let H be a closed subgroup of G. The homogeneous space G/H is called ''spherical'', iff the action of a Borel subgroup of G has a dense orbit in G/H. For example, if H contains a maximal unipotent subgroup of G, or if G/H is a symmetric space, then G/H is spherical. The author proves that any spherical homogeneous space G/H is a deformation of a homogeneous space \(G/H_ 0\), where \(H_ 0\) contains a maximal unipotent subgroup of G. This implies that the action of a Borel subgroup of G on a spherical homogeneous space G/H has only a finite number of orbits.
    0 references
    spherical homogeneous space
    0 references
    deformation of a homogeneous space
    0 references
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references