Quelques propriétés des espaces homogènes sphériques. (Some properties of spherical homogeneous spaces) (Q1083503)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Quelques propriétés des espaces homogènes sphériques. (Some properties of spherical homogeneous spaces) |
scientific article; zbMATH DE number 3975115
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Quelques propriétés des espaces homogènes sphériques. (Some properties of spherical homogeneous spaces) |
scientific article; zbMATH DE number 3975115 |
Statements
Quelques propriétés des espaces homogènes sphériques. (Some properties of spherical homogeneous spaces) (English)
0 references
1986
0 references
Let G be a connected reductive algebraic group over an algebraically closed field of characteristic zero, and let H be a closed subgroup of G. The homogeneous space G/H is called ''spherical'', iff the action of a Borel subgroup of G has a dense orbit in G/H. For example, if H contains a maximal unipotent subgroup of G, or if G/H is a symmetric space, then G/H is spherical. The author proves that any spherical homogeneous space G/H is a deformation of a homogeneous space \(G/H_ 0\), where \(H_ 0\) contains a maximal unipotent subgroup of G. This implies that the action of a Borel subgroup of G on a spherical homogeneous space G/H has only a finite number of orbits.
0 references
spherical homogeneous space
0 references
deformation of a homogeneous space
0 references
0.9198016
0 references
0.88829935
0 references
0.8434254
0 references